Quand rien ne peut-il être quelque chose? Cela semble être une question stupide et assez paradoxale. Dans le domaine mathématique de la théorie des ensembles, il est courant que rien ne soit autre chose que rien. Comment se peut-il?
Lorsque nous formons un ensemble sans éléments, nous n'avons plus rien. Nous avons un ensemble sans rien dedans. Il existe un nom spécial pour l'ensemble qui ne contient aucun élément. C'est ce qu'on appelle l'ensemble vide ou nul.
La définition de l'ensemble vide est assez subtile et nécessite un peu de réflexion. Il est important de se rappeler que nous considérons un ensemble comme une collection d'éléments. L'ensemble lui-même est différent des éléments qu'il contient.
Par exemple, nous allons regarder 5, qui est un ensemble contenant l'élément 5. L'ensemble 5 n'est pas un nombre. C'est un ensemble avec le nombre 5 comme élément, tandis que 5 est un nombre.
De la même manière, l'ensemble vide n'est pas rien. Au lieu de cela, c'est l'ensemble sans éléments. Il est utile de considérer les ensembles comme des conteneurs, et les éléments sont ces choses que nous y mettons. Un conteneur vide est toujours un conteneur et est similaire à l'ensemble vide.
L'ensemble vide est unique, c'est pourquoi il est tout à fait approprié de parler de le ensemble vide, plutôt que un ensemble vide. Cela rend l'ensemble vide distinct des autres ensembles. Il y a une infinité d'ensembles avec un élément en eux. Les ensembles a, 1, b et 123 ont chacun un élément et sont donc équivalents les uns aux autres. Comme les éléments eux-mêmes sont différents les uns des autres, les ensembles ne sont pas égaux.
Il n'y a rien de spécial dans les exemples ci-dessus ayant chacun un élément. À une exception près, pour tout nombre de comptage ou infini, il existe une infinité d'ensembles de cette taille. L'exception concerne le nombre zéro. Il n'y a qu'un seul ensemble, l'ensemble vide, sans aucun élément.
La preuve mathématique de ce fait n'est pas difficile. Nous supposons d'abord que l'ensemble vide n'est pas unique, qu'il y a deux ensembles sans éléments en eux, puis utilisons quelques propriétés de la théorie des ensembles pour montrer que cette hypothèse implique une contradiction.
L'ensemble vide est désigné par le symbole ∅, qui provient d'un symbole similaire de l'alphabet danois. Certains livres font référence à l'ensemble vide par son nom alternatif d'ensemble nul.
Puisqu'il n'y a qu'un seul ensemble vide, il vaut la peine de voir ce qui se passe lorsque les opérations d'ensemble d'intersection, d'union et de complément sont utilisées avec l'ensemble vide et un ensemble général que nous désignerons par X. Il est également intéressant de considérer un sous-ensemble de l'ensemble vide et quand l'ensemble vide est-il un sous-ensemble. Ces faits sont rassemblés ci-dessous: