Une variable aléatoire binomiale fournit un exemple important de variable aléatoire discrète. La distribution binomiale, qui décrit la probabilité pour chaque valeur de notre variable aléatoire, peut être déterminée complètement par les deux paramètres: n et p. Ici n est le nombre d'essais indépendants et p est la probabilité constante de succès dans chaque essai. Les tableaux ci-dessous fournissent des probabilités binomiales pour n = 7,8 et 9. Les probabilités de chacune sont arrondies à trois décimales.
Faut-il utiliser une distribution binomiale?. Avant de sauter pour utiliser ce tableau, nous devons vérifier que les conditions suivantes sont remplies:
Lorsque ces quatre conditions sont remplies, la distribution binomiale donnera la probabilité de r succès dans une expérience avec un total de n essais indépendants, chacun ayant une probabilité de succès p. Les probabilités du tableau sont calculées par la formule C(n, r)pr(1 - p)n - r où C(n, r) est la formule des combinaisons. Il existe des tableaux séparés pour chaque valeur de n. Chaque entrée du tableau est organisée selon les valeurs de p et de r.
Pour les autres tableaux de distribution binomiale, nous avons n = 2 à 6, n = 10 à 11. Lorsque les valeurs de np et n(1 - p) sont tous les deux supérieurs ou égaux à 10, nous pouvons utiliser l'approximation normale de la distribution binomiale. Cela nous donne une bonne approximation de nos probabilités et ne nécessite pas le calcul de coefficients binomiaux. Cela offre un grand avantage car ces calculs binomiaux peuvent être assez compliqués.
La génétique a de nombreux liens avec la probabilité. Nous en examinerons une pour illustrer l'utilisation de la distribution binomiale. Supposons que nous savons que la probabilité qu'une progéniture hérite de deux copies d'un gène récessif (et donc possédant le trait récessif que nous étudions) est de 1/4.
De plus, nous voulons calculer la probabilité qu'un certain nombre d'enfants dans une famille de huit membres possèdent ce trait. Laisser X être le nombre d'enfants avec ce trait. Nous regardons le tableau pour n = 8 et la colonne avec p = 0,25, et voyez ce qui suit:
.100
.267.311.208.087.023.004
Cela signifie pour notre exemple que
n = 7
p | .01 | .05 | .dix | .15 | .20 | .25 | .30 | .35 | .40 | .45 | .50 | .55 | .60 | .65 | .70 | .75 | .80 | .85 | .90 | .95 | |
r | 0 | .932 | .698 | .478 | .321 | .210 | .133 | .082 | .049 | .028 | .015 | .008 | .004 | .002 | .001 | .000 | .000 | .000 | .000 | .000 | .000 |
1 | .066 | .257 | .372 | .396 | .367 | .311 | .247 | .185 | .131 | .087 | .055 | .032 | .017 | .008 | .004 | .001 | .000 | .000 | .000 | .000 | |
2 | .002 | .041 | .124 | .210 | .275 | .311 | .318 | .299 | .261 | .214 | .164 | .117 | .077 | .047 | .025 | .012 | .004 | .001 | .000 | .000 | |
3 | .000 | .004 | .023 | .062 | .115 | .173 | .227 | .268 | .290 | .292 | .273 | .239 | .194 | .144 | .097 | .058 | .029 | .011 | .003 | .000 | |
4 | .000 | .000 | .003 | .011 | .029 | .058 | .097 | .144 | .194 | .239 | .273 | .292 | .290 | ; 268 | .227 | .173 | .115 | .062 | .023 | .004 | |
5 | .000 | .000 | .000 | .001 | .004 | .012 | .025 | .047 | .077 | .117 | .164 | .214 | .261 | .299 | .318 | .311 | .275 | .210 | .124 | .041 | |
6 | .000 | .000 | .000 | .000 | .000 | .001 | .004 | .008 | .017 | .032 | .055 | .087 | .131 | .185 | .247 | .311 | .367 | .396 | .372 | .257 | |
sept | .000 | .000 | .000 | .000 | .000 | .000 | .000 | .001 | .002 | .004 | .008 | .015 | .028 | .049 | .082 | .133 | .210 | .321 | .478 | .698 |
n = 8
p | .01 | .05 | .dix | .15 | .20 | .25 | .30 | .35 | .40 | .45 | .50 | .55 | .60 | .65 | .70 | .75 | .80 | .85 | .90 | .95 | |
r | 0 | .923 | .663 | .430 | .272 | .168 | .100 | .058 | .032 | .017 | .008 | .004 | .002 | .001 | .000 | .000 | .000 | .000 | .000 | .000 | .000 |
1 | .075 | .279 | .383 | .385 | .336 | .267 | .198 | .137 | .090 | .055 | .031 | .016 | .008 | .003 | .001 | .000 | .000 | .000 | .000 | .000 | |
2 | .003 | .051 | .149 | .238 | .294 | .311 | .296 | .259 | .209 | .157 | .109 | .070 | .041 | .022 | .010 | .004 | .001 | .000 | .000 | .000 | |
3 | .000 | .005 | .033 | .084 | .147 | .208 | .254 | .279 | .279 | .257 | .219 | .172 | .124 | .081 | .047 | .023 | .009 | .003 | .000 | .000 | |
4 | .000 | .000 | .005 | : 018 | .046 | .087 | .136 | .188 | .232 | .263 | .273 | .263 | .232 | .188 | .136 | .087 | .046 | .018 | .005 | .000 | |
5 | .000 | .000 | .000 | .003 | .009 | .023 | .047 | .081 | .124 | .172 | .219 | .257 | .279 | .279 | .254 | .208 | .147 | .084 | .033 | .005 | |
6 | .000 | .000 | .000 | .000 | .001 | .004 | .010 | .022 | .041 | .070 | .109 | .157 | .209 | .259 | .296 | .311 | .294 | .238 | .149 | .051 | |
sept | .000 | .000 | .000 | .000 | .000 | .000 | .001 | .003 | .008 | .016 | .031 | .055 | .090 | .137 | .198 | .267 | .336 | .385 | .383 | .279 | |
8 | .000 | .000 | .000 | .000 | .000 | 000 | .000 | .000 | .001 | .002 | .004 | .008 | .017 | .032 | .058 | .100 | .168 | .272 | .430 | .663 |
n = 9