Il existe différentes distributions de probabilité. Chacune de ces distributions a une application et une utilisation spécifiques adaptées à un paramètre particulier. Ces distributions vont de la courbe en cloche toujours connue (alias une distribution normale) à des distributions moins connues, telles que la distribution gamma. La plupart des distributions impliquent une courbe de densité compliquée, mais certaines ne le font pas. L'une des courbes de densité les plus simples est pour une distribution de probabilité uniforme.
La distribution uniforme tire son nom du fait que les probabilités pour tous les résultats sont les mêmes. Contrairement à une distribution normale avec une bosse au milieu ou une distribution chi carré, une distribution uniforme n'a pas de mode. Au lieu de cela, chaque résultat est également susceptible de se produire. Contrairement à une distribution khi-deux, il n'y a pas d'asymétrie à une distribution uniforme. En conséquence, la moyenne et la médiane coïncident.
Étant donné que chaque résultat dans une distribution uniforme se produit avec la même fréquence relative, la forme résultante de la distribution est celle d'un rectangle.
Toute situation dans laquelle chaque résultat dans un espace échantillon est également probable utilisera une distribution uniforme. Un exemple de cela dans un cas discret est le laminage d'une seule matrice standard. Il y a un total de six côtés du dé, et chaque côté a la même probabilité d'être lancé face visible. L'histogramme de probabilité pour cette distribution est de forme rectangulaire, avec six barres qui ont chacune une hauteur de 1/6.
Pour un exemple de distribution uniforme dans un cadre continu, considérons un générateur de nombres aléatoires idéalisé. Cela générera vraiment un nombre aléatoire à partir d'une plage de valeurs spécifiée. Donc, s'il est spécifié que le générateur doit produire un nombre aléatoire entre 1 et 4, alors 3,25, 3, e, 2.222222, 3.4545456 et pi sont tous les nombres possibles qui sont également susceptibles d'être produits.
Étant donné que l'aire totale entourée d'une courbe de densité doit être 1, ce qui correspond à 100%, il est simple de déterminer la courbe de densité pour notre générateur de nombres aléatoires. Si le nombre provient de la plage une à b, alors cela correspond à un intervalle de longueur b - une. Pour avoir une surface d'un, la hauteur doit être de 1 / (b - une).
Par exemple, pour un nombre aléatoire généré de 1 à 4, la hauteur de la courbe de densité serait 1/3.
Il est important de se rappeler que la hauteur d'une courbe n'indique pas directement la probabilité d'un résultat. Au contraire, comme pour toute courbe de densité, les probabilités sont déterminées par les zones sous la courbe.
Puisqu'une distribution uniforme a la forme d'un rectangle, les probabilités sont très faciles à déterminer. Plutôt que d'utiliser le calcul pour trouver l'aire sous une courbe, utilisez simplement une géométrie de base. N'oubliez pas que l'aire d'un rectangle est sa base multipliée par sa hauteur.
Revenez au même exemple que précédemment. Dans cet exemple, X est un nombre aléatoire généré entre les valeurs 1 et 4. La probabilité que X est compris entre 1 et 3 est 2/3 car cela constitue la zone sous la courbe entre 1 et 3.